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Abstract—The analytical solution for the stress field is derived for the case of a non-homogeneous
curved beam in the form of a segment of a plane circular ring fixed at one end and acted upon by
a load at the other end. It is assumed that the beam possesses general anisotropy and that the elastic
constants are linear functions (with two non-zero coefficients) of the radial distance. The solution
is found in a series form with a complex stress function. Numerical examples for the distribution
of stresses in comparison with the homogeneous orthotropic case are presented and the effect of
the gradient in the elastic constants is discussed.

INTRODUCTION

Although the problem of bending of anisotropic curved beams has been considered in the
literature, for example in Lekhnitskii (1963), the solutions were given for pure bending with
general anisotropy or for bending by an end force with orthotropy. Moreover, the material
was assumed homogenceous, i.c. non-varying clastic constants. In engincering applications
of composite parts in the form of curved beams there is often a gradient in the elastic
constants through the thickness. The stress distribution in this case of variable elastic
constants ts more complicated and a solution for pure bending and assuming orthotropy,
is known only when the constants change along the radius according to a power law, and
can be found in Lekhnitskit (1968). Such a case does not however reflect the actual
distribution of the moduli in practice ; instcad practical applications are closely represented
by a linear variation (with two non-zero coeflicients) of the clastic constants through the
thickness. A solution for pure bending of cylindrically orthotropic curved beams with such
lincarly distributed clastic constants was found by Kuardomateas (1990). In this paper we
present the solution to the more general problem of bending of curved beams by an end
force and under the assumption of generalized anisotropy with elastic constants being a
linear function of the radial distance with two non-zero coefficients.

The curved beam is considered as a segment of a plane circular ring and it is assumed
to be fixed at one end and deformed by forces distributed at the other end which produce
a force applied at the center of the cross section (Fig. 1). It is also assumed that there are
no body forces. The beam possesses cylindrical anisotropy and its pole is located at the

Fig. |. Definition of the curved beam geometry.
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center of the circles, the arcs of which form the beam contour. To describe the stress field
we use a complex stress function formulation. After deriving the governing equations, the
solution is produced by a series expansion. Results of the analysis for an illustrated example
are discussed with emphasis on the effects of the anisotropy and the gradient in the elastic
constants.

FORMULATION

The problem considered here is the stress distribution caused by an end force in a
curved beam in the shape of a segment of a flat circular ring. We assume that the beam
possesses cylindrical anistropy. One pole of anisotropy is located at the common center of
the circular arcs which form the outside and inside edges of the beam. Aside from planes
of elastic symmetry. which are parallel to the middle surface, there are no other elements
of elastic symmetry. Figure | shows the cross section of the beam at the middle plane. The
beam is fixed at one end and it is deformed by forces distributed at the other end which
produce a force P applied at the center of the cross section. It is assumed that the anisotropy
pole s the origin of the coordinates, the x-axis runs along the radius at the loaded end, and
r, and r, are the inside and outside radii. We designate by w the angle between the force
and the x axis. The magnitude of the angle between the edge sections is arbitrary, but not
larger than 2n. The basic assumption is that the clastic constants have a lincar variation
through the thickness. Therefore the generalized Hooke's law is written

€, = A 0, +0a T+ AT, (la)
Lop = ()20, +d 2Ty +d 36 Trys (Ib)
Yo = 6O FU 3O+ Ao Tons (l¢)
where
a, = u,(r).

Notice that in the special case of orthotropy there would also be radial and tangential
planes of symmetry at cach point in addition to the plane of elastic symmetry that is parallcl
to the middle planc and in that case ¢, = ¢ = 0.

The equilibrium equations are:

_ )
,,,,, 4oL ;'m__.()‘ (2a)

Oty b Coyy 21,
Cow Ty, (2b)

cor r ¢t r

The cquilibrium equations are satisticd by introducing a stress function F(r.t) as follows :

5

1éF 1 ¢-F
¢, = i RS (311)
rcéroortQ0°
0 F & (F
Ow = yvrs Tw= "5, (3b)
Mot ! créf (r)
Now the compatibility equation necds to be satisfied and is written
g 1 (re, 2 (ry, Je,,
T8, ¢ (r‘lhﬂ _ (_—(A( ﬂ) —_ = 0. (4)

Y r -~ -~
o or? arcl cr
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The elastic constants are not constant throughout but are assumed to be linear functions
of r, in the form

aij = Qe+ gyl &)

Using (). (2). (3). the compatibility equation integrates to the following differential
equation which must be satisfied by the stress function:

LF =09, (6a)

where L is a differential operator defined by :

a“ 3 4
(azzc“l"aﬂs ?')r 6 i +2(azzc ..azzgf)fe 3 2(016c+avwf)r 3@9
& 4
—[ayic—=(a 2, +2a;35,— ally)r] p: +[(2a|n+aﬁoc)+(7am+ase.;)’] 3307
J’ 12 1 o 1 o
3026:1’6’269 +allc; 6r 7(a|6c+al6yr) 6 69‘ ("a\.c+066(‘) 6 002
2 l 3 a]
—2ay 5 F 260+ ApogT )r 3 .,(}'f'((f:tc'*’“aw-") T + (24,6 4+ 657) 7300
1 & d
+[(2a“‘.+..a,~,‘+a‘,,,,)+a“,,rj -3 10, +{2 (a“,r-f-az(,()+a”,,,r} 3" {6b)

Next, we shall solve the above eqn (6). The solution is sct in the form of a scries
expansion as follows

2 R
F(r,()) = Z C,‘r”k K:'”-f-c"kl'“k L‘“""‘-—-z Z Rc{('kr”k cm}' (7)
ka0 ki

where ¢, and s are complex numbers, & and § are their conjugates, respectively, and Re
denotes the real part. Substituting into the differential equation we obtain:

= 2Re {c"’ i e [A(s. k) + B(s, k)rjret* - 2} =0, (8)

k-0
where A(s, k) and B(s, k) are complex functions of s, & and the elastic constants as follows:
A(sk) = [an (s +HR) (s +hk=2) = (ay, + 22 + des.) — 2025 (s + k= D] (s + k= H?, (9a)

B(s.,k) = (@23, (s +K)(s+h—1) = (ay 1y + @13, + Qge,) — 16,25+ 2k = D] (s +h) (s + k= 1).
(9b)

To determine the constants we equate to zero the cocfficient of each power of rin (8). The
coefficient of the lowest power of r, which is #* =2, gives the indicial equation A(s, 0) =

{Ialks(s_z)—(alIc+2a12c+abﬁc)]—izal6r(s— I)}(s-— 1)2 =0. (10a)

Thus there is one double root s, and two simple roots s, ,. The complex values s, 4 are
solutions of the eqn

aza.s “‘2(azzc+iﬂznc)5—(a|lc+2012c+aaac+‘2‘1:ec) =0. (10b)

Therefore,
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a::ci': +i(02 i:-\
sp =1, sy4= 'a i) (11a)

22

where >, and :, are defined in terms of

Oy = ar(a) o +2a, 5 +as; +a4.) — 3, 02 = 4a33d36. (I1b)

as follows:
- ()| +t) +0 R
SERNE 5 (llc)

From the coefficient of r'**~* we obtain
GAG K+ B k—=1) =0, (12)

This recurrence relation determines successtvely the coefficients ¢, ¢,.... in terms of ¢,.
Since we have two independent solutions corresponding to the double root 5,, and two
corresponding to the single roots s, s, we shall denote the corresponding cocflicients by
Ciis Cias G Cig- For example, for the root s,

C3y = —Cqy

H‘_’?ﬁ‘h :7)(‘\'1"l)“(“n.,'*‘“l-q_7“214‘*‘“(,&, ]—“"6.1(7\1—1) (‘1“1) (13)

{[a22.( —l)—(allr+’lll":.+ab(:¢)] 7"1"o¢511‘\

We can arbitranly set ¢, = 1.

Although the solutions corresponding to the simple roots s, 4 are established in a
straightforward manngr, the independent solutions corresponding to the double root sy = |
are yet to be defined. For the root s, the corresponding series solution from (7) is

Fi(r.0) =2Re ¥ ¢, r ' e (14)

k=0

Substituting into the differential equation (6) we get an equation of the form (8) where now
s = 5, = L. However, from eqns (9) we sce that

B(s,,0) =0, (15a)
and therefore from (12) we conclude that only the term corresponding to ¢, remains, i.c.
cu=0; k=1l (15b)

Therefore, (8) becomes
LF, = 2Re {c,o[A4(s,0) + B(s,0)r]r* " * ”}. (15¢)

Differentiating both sides with respect to s we obtain:

P
L <%> = 2Re {e‘”cm IiaA;g ) BS' 0 r+A(5,0) Inr+ B(s.0)r In r:] r'- } (15d)
5 s
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Since s = 1 is a double root of A(s, 0), eqn (10a), it follows that

A(5,.0) = (‘Mé’s'o))_ =0. (15¢)

Taking into account (15a) we conclude that

L(g—'—) =c,02Re{e"’(m) r""}. (156)
05 fyas, 05 Jims,

Now we define the second independent solution corresponding to the double root s, by

CF X . . ,
Fz(r,g) = (f—(—?—;l) +kzo [Cur1|+k+| el"+62er|+k+l e—[l}]. (l6)

From (8) and (15f) the coefficients of the series in (16) are given by

28(s.0)
Cro o5

) +C2()A(S|,l)30, (172’.)
t',‘,
and in general,

Cow B LK) FeyAdls k+ 1) =0, k2L (17b)

Thus from (14) and (16) the two solutions corresponding to the double root s, are

F,(r.ﬂ) = 2Rc {Cl(,r Cm}. (188)
Fy(r,0) = 2Re {c‘" [cm rinr+ Y c:kr"”]}. (18b)
k=g

Now let us denote the four series solutions, two corresponding to the double root s, and
two to the simple roots 53 4 by F\ 5.1.4(r. 0, ;). Then the general solution of the homogeneous
equation is any linear combination of these four independent solutions, namely

F(r,0) = ¥ CF(r.0,a,). : (19)

i=Q

Before proceeding to the determination of the constants C,, let us discuss the con-
vergence of the series (7). We shall use the Gauss test that requires taking the ratio of two
consecutive terms

{aa[(s+ k) = 1] = (a1, +2a, 5+ ags.) — 2036 (5+K)}
(@22 (s +hk =) (s+k+ 1) = (@11, + 13, — 2822, +Ag,) — 26, (25 + 2k — 1)}

_ b ay  anl 1)
=0 {azzy + Py +0 (E-z- . 20
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From the Gauss test we conclude that the senies {7) is absolutely convergent if
lax:d > lass#]. This is the only limitation to the solution given here, The same is true for
the series (16). In this case the solution is achieved by using a series in descending powers
of r.i.e.in the form } c.r*"* e and the general procedure for formulating a solution would
be the same.

Now set

S: = S; -+ i (21}
Then from (3) the stresses are given by
. 4 kS
a..(r.0) = 2Re {e"’C:r““—ke’" S CY culs,Hk—Drett } (220
i= 2 k=0
| L R
awir ) = 2Re {e‘“(}f e Y GOy ocuds R k=D J (22h)
1= 2 k=1
4 I3
tolr.) = —2Re {z’c‘“(}r Gt Y COY ey Fk =Dt } )
I k=0

The constants C, f = |, 4, are found from the traction free boundary conditions of

T (P 0) = 1,4(r.0) =0 at r=r,r, (2%
and the condition that the stresses at the free end be reduced to a foree £ as follows:
j‘ A Gualr, Oe _ o dr = Psin, ‘( h Tolr iy .y dr = ~ Pcos w, (24a)
730 A
f w”'fuu(f'( 0)!0 oy dr =0, (2.‘{))

The conditions (23) reduce to the following equations for the complex constants:

k3 £
Cor, "+ Y C Y cals,+k—Drp* 2=00 j=1,2 (25)

2 ko )

Let us set the complex roots of the indicial equation s, the coefficients ¢, and the unknown
complex constants C, in the form

C‘r = ("fr + I‘C’m: VG = Car + ‘g{‘&m N + f.\“mn (26}

Morcover, define
k) = (5, +k) cos (s In 7)) =5, 810 {5, I 7 (27a)
9p(K) = 5, COS (8 In 7)) + (8, +4) sIN (5, In 7). (27b)

The conditions {23) reduce to the following four linear equations for the real and imaginary
parts, C,. C,pu £ = 2,4
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XS

Co S rt e filk— 1) = cungulk = )]
k -0

2

4 ©
- Z Cim z r;"+k_2[cikmf;i(k—l)+cikrgji(k—1)] =0, j=12, (28a)
k=0

i=2

and

4 €T

Conri '+ Y. Co Y 1t P leum Stk — 1)+ Cargi(k = 1)]

i=2 k=0
4

+ 2 Cin i re ew itk =) —Cumguk— DI = 05 j=1,2. (28b)

i=2 k=10

Now the second eqn of (24b) becomes

C, (fw—r|)+ Z C Z ,k(S,+k—l)("J +k r3{+k) = 0’ (29)

i=2 k=0

and it is automatically satisfied once the traction {rec conditions (23) are satisfied.
Finally, the first of the end conditions (24a) reduces to:

‘Z (=1 {Czr In r,+ Z C, Z ’;"“‘ l[C:krfu(k)“Cikmgﬁ(k)]

j= t=2 k=0

4 an

=2 Co X 1j** [k //(k)+c.k,y,,(k)]} = (P/2)sinw, (30a)

i=-2 k-0

and the second condition in (244) gives:

2 4 0
Y (=1 {Cz,,, Inr,+ Y C. 3 rir** Yy, sin (s, In 1))
J=1 i=-2 k=0

+ Cikm €OS (5, In 1)) + Z C. Z rjet* = [cu,cOs (Simln 1))
i=2 k=0

— Cigm SIN (S, In r,)]} = —(Pf2)cosw. (30b)

Therefore we have the six eqns (28) and (30) to solve for the six unknowns, the real
and imaginary parts of the constants, i.e. C,,, C,, i = 2, 4.
Concerning the displacement field, we use the strain-displacement relations :

QJ

Ou,

r=%mm;

1 0u, Ouy U _

| u,
" '3“ - = Ego(r,0);

Using (1) and (22) and integrating (31) we obtain the displacements. In terms of

hi(k) = ay\ +ag 2 (si+k) —iayq, (32a)

si+k—

h,-g(k)=[a||y+alzg(3(+k) la,w]—’—*_z—,

(32b)

we obtain the radial displacement
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u, = 2Re {C; e’lay . +ays—iae) In 4@, +a,5,~ia,e,)7]

4 T
+ Y C Y curt e [h (k) +rhy (k)]

P2 k=@
iC,
) (@i +ax 425 +ag)0 e’ +d, e +d, 5_19} (33)
and in terms of
qi(‘(k) =a|h‘+al’c a'.'z((sr+k)(sl+k—I)+l‘u26('(sr+k~l)—t'al()vv (343)
R . k-1
0. (k) = [a, ,q—(5,+k)*a32_‘,+za:w(s,+k)-iau,,,]s—sir, (34b)

we obtain the tangential displacement

Uy = 2Re {C:l‘cm[((h te +(llz‘<-ia|(,(«) In r—(a,:(.-{'-azz. “i(lwm.)

~(Uyay = Uy + iy g — i3, )7 + Z o Z cur Ve [q (K) + g, (k)]

T k=10
i,
+ ;’ ‘((l”( + ¢l

ol

20,5 + age ) (1 —i0) & +a"ic”'wdgic"”-{»a'}r}. (35)

-

Assume the radial boundary of the beam at the built-inendisat 0 = ¢. Then takew, = u, = 0
at ¢ = ¢ and at the middle point, r = (ry+r,)/2. Also at the built-in end du,/dr = 0. This
gives the necessary conditions for the determination of the constants o, i = 1, 3 in the
displacement field.

RESULTS AND DISCUSSION

Before proceeding to numerical results for an illustrative example case, let us consider
the limit of an orthotropic homogencous material, i.¢. the limit of ¢, =0 and a4, =
Uy, = 0. For this limit the roots in (11a) become

1+2 2e <
5= |‘ Syy = [i[)" /fm\/l+all Ayt dge, ) (36)

X

The series solutions Fy , degenerate to only the first term for & = 0, since B(s, &).= 0in (9b)
and (12). Moreover, the solution F, in (18b) does not include the sum but only the
logarithmic term because ¢;, = 0 since B(s, k) = 0 in (9b) and (17). Therefore, the present
solution degenerates in the limit to the solution for the orthotropic homogeneous beam
(Lekhnitskii, 1963). In this limit, the complex constants C,, i = 2, 4 are given as follows:

Psinw Pcosw
3 - TE i e s = 2 fyg = e, 3 ¢
2 (ra=r\)g,pry’ Come 1o (r:—ri)gpr O72)
Psinw Pcosw
2C,.con = — e 2C 0 = ——————rF 37b
Cartan (ra—rig\f 1 Contan (*":—ﬁ)gnﬁr[ ( )
20, = = DSNG ny ac, = PSPy (37¢)
e (r’—rl)gl’ﬂ - :m—.( —’x)gx’ﬂ

As an illustrative example consider now a curved beam made of graphite/epoxy with
variable elastic constants through the thickness of inside radius r, = 1 m and ry/r, = 2.
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Table 1. Convergence of the series solution

Values of the kth term (at r = ry and 8 = 0) of the
stress functions, eqn (7). Fy and F, (in Nt)

55 = 2.837+i(0.064) so= —0.837—i(1.511)

k=0 k=10 k=25 k=50 k = 100
F, 0.143x 102 0.315x 10" 0.212x 10-3 0.213x 10-* 0.785x 10~ "2
F. 0.559 x 10° 0.369 x 102 0.203x 10~ 0.186 x 10’ 0.664x 10-1

Assume that the compliance constants corresponding to the orthotropic lay-up are as
follows in m? Nt~! [notice that | corresponds to the radial (r) direction and 2 corresponds
to the tangential () direction] :

an.=0.110x10"° a;, = —0.330x10"*, a;; =0.680x 1072,

Ao =0, a6 =0, g =0234x10"°

Let us assume that the elastic constants vary according to (5) and the gradient through the
thickness is expressed by the parameter p as follows:

a4y, = QP (38)
For an examplc case, assume p = —0.40. The constants a;, for any other lay-up angle which
is denoted by 0, and hence general anisotropy, can be found by the known transformation
rules (Jones, 1975).

First the convergence of the series solution is illustrated in Table 1 which shows the
kth term of the scries expansion of the stress functions that correspond to the third, 55, and
fourth, s, roots of (10a), Fy(r, 0) and F,(r, 0), evaluated at r = r, and 0 = 0. The scrics
seems to be rapidly converging in a satisfactory manner.

In the following figures the radial distance is normalized as 7 = (r—r,)/(r,~r,) and
the stresses are normalized as 6, = 0,,(r,—r,)/P. The effect of a gradient in the clastic
constants is illustrated in Figs 2, 3 and 4, which show the distribution through the thickness
of the normalized stresses &,,, Gy and 7,y at 6 = 0 and for the case of non-homogeneous
orthotropy. The curves are compared with the stresses for a beam of constant moduli, i.e.
a homogeneous and orthotropic beam (solid curve), given by Lekhnitskii (1963):

12 p = 0 (homog.)

0.8
-
-

®

o 067
8

Be]

w

0.4

021)f

0.0 T Y \ v \
0.0 0.2 0.4 0.8 0.8 1.0

Radial Distance, 7

Fig. 2. Radia! dis_tn'bu(ion of the stress g,, at the section 6 = 0 for the orthotropic case (0, = 0).
The broken line is for a grac.iient parameter p = —0.40. The solid line represents the case of a
homogeneous orthotropic beam with non-varying elastic constants throughout (p = 0).
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—— p =0 (homog.)

) &09

Stress

0.0 0.2 0.4 08 0.8 1.0
Radial Distance, 7

Fig. 3. Stress distribution ¢, through the thickness at the section § = 0 for the orthotropic case

(#,; = 0). The broken line is for a gradient parameter p = —0.40. The solid line represents the case

of a homogeneous orthotropic beam with non-varying elastic constants throughout (p = 0) as given
in Lekhnitskii (1968).

S r r (r ’+ s L—c | sin 0 0,
" ’:(’:""vu)!ln r "; ¢ r] —c | sin (0+w). (39a)

Ty = F i on (1+5) r)’+(| If) r\ 4 1= Lsin (0 196
" riry—=rig.r r )T sin (0+w), (39b)

P ral (e Y r Y
Ty = - - -+ 1= feos (0+w), (39¢)
rylry=r)yg, r L\n r

where ff is given by eqn (36) and

c=rry; g =Z(l¢—d’)+(l+d’) Inec. (39d)

The stress of highest magnitude is the a,. Due to the gradient in the clastic constunts

p = 0 (homog.)

) frﬂ

Stress

Radial Distance, ¥

Fig. 4. Stress distribution 1, through the thickness at the section § = 0 for the orthotropic casc
(8., = 0). The broken line is for a gradient parameter p = —0.40. The solid line represents the case
of a homogeneous orthotropic beam with non-varying elastic constants throughout {p = 0).
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1.2}

Ettaand ocl = 00
T O =45"

Stress, 6.,

0.0 — v T Y
0.0 0.2 0.4 0.6 0.8 1.0

Radial Distance, 7
Fig. 5. Stress distribution o,, through the thickness at the section § = 0 for a gradient parameter

p = —0.40, illustrating the effect of anisotropy. The solid line is for the case of a lay-up angle
,, = 45°. The broken line represents the case of a non-homogeneous orthotropic beam (6,, = 0).

the stress is by absolute value 70% higher at the outer surface (7 = 1) and 30% lower at
the inner surface (7 = 0) relative to the homogeneous case. The important point is that the
maximum stress is now at the outer edge as opposed to the homogeneous orthotropic case
where the maximum stress occurs at the inner edge (and in this case it is twice that at the
outer edge). Notice that the normal stress for an orthotropic homogencous beam is always
larger at the inside edge 7 = 0 and it is equal to (Lekhnitskii, 1968) :

_ Psin (0+w) B(1-¢%)

rrz—=ri)g, ¢

(40)

(aoﬂ)r -r =

The other two components of stress g, and 1,4 are of much smaller magnitude ; relative
to the homogencous case the curves are shifted so that the stress is increased at points closer
to the outside edge (F = 1) and reduced towards the inside (F = 0) edge.

The cffect of anisotropy is illustrated in Figs 5, 6 and 7, which show the distribution
through the thickness of the normalized stresses 4,,, 6y and T4 at 0 = 0 and for the casc of

St.ress, O

-10 v v v v
0.0 0.2 0.4 0.6 0.8 1.0

Radial Distance, ¥

Fig. 6. Stress distribution a4 through the thickness at the section 0 = 0 for a gradient parameter

p = —0.40, illustrating the effect of anisotropy. The solid line is for the case of a lay-up angle

0,, = 45". The broken line represents the case of a non-homogencous orthotropic beam (9, = 0,
with gradient parameter p = —0.40).
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reeenee B =00
A oel = 450

y Tro

Stress

1.2 * v r 4
0.0 0.2 0.4 0.6 0.8 1.0

Radial Distance, 7

Fig. 7. Stress distribution r, through the thickness at the section 8 = 0 for a gradient parameter
p = —0.40, illustrating the effect of anisotropy. The solid line is for the case of a lay-up angle
6., = 45°. The broken line represents the case of a non-homogeneous orthotropic beam (4., = 0).

a gradient parameter p = —0.40. The solid curve represents the case of a lay-up angle
0., = 45", whereas the dashed curve s for the orthotropic non-homogencous case. Again,
because of the deviation from orthotropy both the location and the maximum stress 6,
occur at the inside edge for the case of §,, = 45° as opposed to occurring at the outside edge
in the non-homogeneous orthotropic case. The maximum stress in the 45° lay-up case is
also 20% less than that in the 07 lay-up orthotropic case. Notice also that for an isotropic
beam the stresses would be independent of the elastic constants and would depend only on
the geometry, i.c. radii r\, ry and on the applied loading P (e.g. Timoshenko and Goodier,
1970).

Finally Fig. 8 illustrates the combined effect of anisotropy and variation of elastic
constants through the thickness by showing the ratio of the hoop stress gy, at the outside
and inside fibers as a function of the gradient parameter p for two values of ¢,,. The ratio
becomes greater than unity beyond a certain value of the gradient parameter p. This effect
is greater in the orthotropic case than in the 45° lay-up case. The resulting curves are non-
linear with higher slope at the larger absolute values of p which means that there is more

Q.0

I [(o08)r,

.0.45 -0.30 015 0.00
14

Fig. 8. Ratio of the tangential stresscs at the outside edge (ow)l,, and at the inside edge (a@.,)l,!
at the section # = 0 vs the gradient parameter p. The solid line is for the case of a lay-up angle ,, =
45", The broken line represents the case of a non-homogeneous orthotropic beam (8, = 0).
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stress reduction or increase per unit change in the compliance constants at the large gradients
of elastic constants through the thickness.
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